Skip to content

Blog

Miksi Suomen kallioperässä voidaan nähdä litosfäärilaattojen rajoilla muodostuneita rakenteita?

Carita Äärelä

1. Litosfäärilaattojen rajat muuttuvat ajanmyötä

Kallioperän muodonmuutosta eli deformaatiota tapahtuu lähinnä litosfäärilaattojen rajoilla. Erityyppisillä laattarajoilla muodostuu erilaisia rakenteita. Koska litosfäärilaatat liikkuvat jatkuvasti, eivät niiden rajat ole aina sijainneet samoissa kohdissa kuin nykyisin. Laattatektoniset prosessit ovat olleet käynnissä aina siitä lähtien, kun maapallon differentoituminen oli edennyt niin pitkälle, että ne ovat olleet mahdollisia (ks. Laattatektoniikka). Suomessa näkyvät kallioperän rakenteet ovat syntyneet siis aiemmissa laattatektonisissa tapahtumissa, jotka eivät enää ole aktiivisia. Fennoskandian kilven kivet ovat siis deformoituneet ja metamorfoituneet useissa menneissä vuorijonon muodostuksissa eli orogenioissa. Tällaisia eri-ikäisiä orogeniavyöhykkeitä on maapallolla useita. Tämän vuoksi mannerlaattojen sisällä havaittavia aiemmissa vuorijonon muodostuksissa syntyneitä rakenteita on mahdollista nähdä myös Suomen kallioperässä.

Lue lisää

Hauraat rakenteet

Kallioperän rakoilu lasketaan hauraiksi rakenteiksi. Kuva: iStock.

Carita Äärelä

1. Kallioperän rakoilu

Hauraita rakenteita ovat kallioperän raot ja siirrokset. Kallioperän raot ovat kiviin muodostuneita murtumispintoja. Kallioperän jännityksen aiheuttamana kiveen voi muodostua heikkouspinta, jota pitkin kivi lohkeaa osiin ja siihen muodostuu rako (kuva 1).

Kuva 1. Kallioperän rakoja graniitissa. Kuva: C. Äärelä.

Lue lisää

Primaarirakenteet

Carita Äärelä

1. Mitä ovat primaarirakenteet?

Primaarirakenteilla tarkoitetaan kiven syntyyn liittyviä rakenteita, kuten esimerkiksi sedimenttikivien kerrostumisen aikaisia rakenteita tai magmakivien kiteytymiseen liittyviä rakenteita, jotka eivät liity suoranaisesti laattatektonisiin prosesseihin. Jotta voimme ymmärtää ja erottaa deformaatiossa muodostuneita rakenteita alkuperäisistä, on tiedettävä millaisia kivet olivat ennen deformaatiota.

Lue lisää

Meteoriittien ominaisuudet

Mikko Turunen

Ominaisuudet

Löydöt ja pudokkaat

Meteoriitit luokitellaan kahteen ryhmään talteensaamistavan mukaan:

  1. Löydöt, joiden putoamisajankohdasta ei ole tietoa ja jotka ovat voineet maata maassa pitkäänkin
  2. Pudokkaat, jotka saadaan talteen pian putoamisensa jälkeen

Pudokkaista noin 86 % on kondriitteja (kivimeteoriitti), 7 % akondriitteja (kivimeteoriitti), 6 % rautoja ja vain 1 % kivirautoja. Löydöistä noin 40 % on rautameteoriitteja, sillä raudat säilyvät maassa kivimeteoriitteja paremmin. Suomesta on saatu talteen kaikkiaan 13 meteoriittia, joista kuuden putoaminen on havaittu. Suomesta ei ole löydetty yhtään rautameteoriittia.

Lue lisää

Meteoriitit

Kuva: iStock.

Ari Brozinskin kooste: Reet Tiirmaa, Väinö Puura, Alvar Soesoo, Sten Suuroja, Ari Linna

Törmääviä taivaankappaleita

Aurinkokunnan planeettojen varhaishetket ovat olleet täynnä katastrofeja, jotka ovat aiheutuneet taivaankappaleiden keskinäisistä törmäyksistä. Aurinkokunnan alkuhetkiä seuranneen rauhallisemman, 4,5 miljardia vuotta kestäneen, kehityksen aikana pienemmät – asteroidien, komeettojen, meteoridien ja kosmisen pölyn aiheuttamat – törmäykset ovat olleet melko tavallisia. Jos planeetoilla on heikosti kehittynyt ilma- ja vesikehä, kuten Kuulla ja Merkuriuksella, impakteissa syntyy maljan mallisia kraattereita ja laajoja kakkuvuokaa muistuttavia painanteita, joissa on isostaattisesti ylös kohonnut keskuskohouma. Monet näistä piirteistä ovat peräisin 3-4 miljardin vuoden takaa. Hyvin kehittynyt ilma- ja vesikehä hidastaa useimpia niihin ajautuvia taivaankappaleita, ja vain suurimmat kappaleet voivat säilyttää niillä avaruudessa olleen kosmisen nopeutensa putoamispaikalle asti; iskeytymishetkellä niiden liike-energia vapautuu räjähdyksenä, mikä johtaa murskaantuneiden, shokkimetamorfoosin läpikäyneiden kivien ja meteoriittikraatterien syntyyn.

Kuvassa nähdään vuonna 1984 löydetty meteoriitti ALH84001, joka putosi Antarktikselle 13 000 vuotta sitten. Meteoriitti on peräisin Marsista ja sen uskottiin sisältävän primitiivisiä fossiileja, jotka olisivat olleet merkki yli 3600 miljoonaa vuotta vanhasta elämästä Marsin pinnalla. Kuva: NASA/JPL.

Lue lisää

Lumipallomaa

Ari Brozinski, Teemu Karlsson

Jääkausi ylitse muiden

Maapallon historiaan on mahtunut lukuisia jääkausia. Niistä viimeisin eli Veiksel päättyi 11 590 vuotta sitten Holoseeniin (nykyaikaan) Baltian jääjärven muuttuessa Yoldianmereksi. Veiksel ulottui laajimmillaan Saksaan Hampurin alueelle, Puolaan, Baltian maihin sekä aina Venäjälle Moskovan tienoille saakka. Veiksel kuitenkin kalpenee laajuudessa suurimmille jääkausille, joiden mittasuhteet olivat niin valtavat, että ne luultavasti vuorasivat koko planeettamme, niin meret kuin mantereet, paksuun jäiseen kerrokseen.

Lue lisää

Deformaatio

Carita Äärelä

1. Mitä deformaatio tarkoittaa?

Deformaatio tarkoittaa geologiassa kivien muodon, paikan ja asennon muuttumista. Deformaatiossa kivien alkuperäinen rakenne muuttuu ja niihin syntyy uusia geologisia rakenteita, kuten rakoilua, siirroksia, poimuja, lineaatioita ja liuskeisuutta. Deformaation aiheuttamat muutokset voivat näkyä myös mikroskooppisessa mittakaavassa (kuva 1).

Kuva 1. Kiven liuskeisuutta (pystyasentoinen) leikkaava pieni hauras siirros (ylävasen-alaoikea) mikroskooppisessa mittakaavassa. Kuva: P. Skyttä.

Lue lisää

Rakennegeologinen tutkimus ja rakenteiden kolmiulotteisuus

Poimuttuneita sedimenttikivikerroksia. Kuva: iStock.

Carita Äärelä

1. Mitä rakennegeologia on ja mihin sitä tarvitaan?

Rakennegeologia tutkii kallioperän geologisia rakenteita ja niiden kolmiulotteista esiintymistä kallioperässä. Kivissä esiintyviä rakenteita ovat esimerkiksi siirrokset, raot, poimut, lineaatiot ja liuskeisuus. Rakenteet muodostuvat litosfäärilaattojen liikkeistä johtuvien kallioperän heterogeenisten jännitystilojen seurauksena. Kallioperän jännitystila aiheuttaa kivien alkuperäisten rakenteiden muuttumista eli kivet deformoituvat. Rakenteita esiintyy monessa mittakaavassa vaihdellen millimetrin kokoisista useiden kilometrien laajuisiin rakenteisiin. Tarkasteltavana saattaa siis olla yksittäisestä kivestä tehty ohuthie, laaja kallioalue tai vaikkapa usean eri valtion alueelle ulottuva vuorijono. Geometrisen analyysin lisäksi, rakennegeologisen tutkimuksen avulla voidaan selvittää tietyn alueen kallioperän rakenne-evoluutiota. Yhdistelemällä eri alueista saatua tietoa, voidaan selvittää laajemmin maankuoren syntyä ja kehitystä.

Lue lisää
Back To Top